Метод перечисления максимальных независимых множеств в неориентированных графах
Завантаження...
Дата
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут проблем моделювання в енергетиці ім. Г.Є. Пухова НАН України
Анотація
На основе рангового подхода предложен метод перечисления максимальных независимых множеств неориентированного связного графа с временной сложностью, в среднем не превышающей O (n⁶), где n — число вершин в графе, для графов, не содержащих разделяющих вершин, размерность которых не превышает n = 125.
На основі рангового підходу запропоновано метод перерахування максимальних незалежних множин неорієнтованого зв’язного графа з часовою складністю, що в середньому не перевищує O (n⁶), де n — число вершин у графі, для графів, що не мають розділяючих вершин, розмір яких не перевищує n = 125.
Based on the rank approach the authors propose a method of enumeration of maximum independent sets of nonoriented connected graph with time complexity that does not exceed, at an average, O (n⁶), where n is the number of vertices in the graph, for the graphs which do not contain separating vertices, which dimension does not exceed n=125.
На основі рангового підходу запропоновано метод перерахування максимальних незалежних множин неорієнтованого зв’язного графа з часовою складністю, що в середньому не перевищує O (n⁶), де n — число вершин у графі, для графів, що не мають розділяючих вершин, розмір яких не перевищує n = 125.
Based on the rank approach the authors propose a method of enumeration of maximum independent sets of nonoriented connected graph with time complexity that does not exceed, at an average, O (n⁶), where n is the number of vertices in the graph, for the graphs which do not contain separating vertices, which dimension does not exceed n=125.
Опис
Теми
Математическое моделирование и вычислительные методы
Цитування
Метод перечисления максимальных независимых множеств в неориентированных графах / С.В. Листровой, А.В. Сидоренко, Е.С. Листровая // Электронное моделирование. — 2017. — Т. 39, № 4. — С. 3-17. — Бібліогр.: 12 назв. — рос.