Верхня межа орієнтованого роду склейки простих графів
Завантаження...
Дата
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут кібернетики ім. В.М. Глушкова НАН України
Анотація
Уточнено верхню межу орієнтованого роду γ(G) простого графа G. Він є φ-образ двох не вироджених графів Gi без спільних ребер орієнтованого роду γ(Gi) при ототожненні пар точок (x1j, x2j) із множин точок приєднання Xi, j=1,2,..,|Xi|, де під точкою розумітимемо або вершину, або довільну точку ребра графа G.
Уточнена верхняя граница ориентированного рода γ(G) простого графа G. Он является φ-образом двух невырожденных графов Gi без общих ребер ориентированного рода γ(Gi) при отождествлении пар точек (x1j, x2j) из множеств точек присоединения Xi, j=1,2,..,|Xi|, где под точкой понимаем либо вершину, либо произвольную точку ребра графа G.
Upper bound of oriented genus γ(G) of a simple graph G is estimated. The graph is a φ-image of two двух no-degenerate graphs Gi without common edges of orientable genus γ(Gi), with identifying pairs of points (x1j, x2j) from the set of joint points Xi, j=1,2,..,|Xi|, where a point is either a vertex or and arbitrary point of an edge of graph G.
Уточнена верхняя граница ориентированного рода γ(G) простого графа G. Он является φ-образом двух невырожденных графов Gi без общих ребер ориентированного рода γ(Gi) при отождествлении пар точек (x1j, x2j) из множеств точек присоединения Xi, j=1,2,..,|Xi|, где под точкой понимаем либо вершину, либо произвольную точку ребра графа G.
Upper bound of oriented genus γ(G) of a simple graph G is estimated. The graph is a φ-image of two двух no-degenerate graphs Gi without common edges of orientable genus γ(Gi), with identifying pairs of points (x1j, x2j) from the set of joint points Xi, j=1,2,..,|Xi|, where a point is either a vertex or and arbitrary point of an edge of graph G.
Опис
Теми
Цитування
Верхня межа орієнтованого роду склейки простих графів / В.І. Петренюк, Д.А. Петренюк, І.Е. Шулінок // Теорія оптимальних рішень: Зб. наук. пр. — 2018. — № 17. — С. 69-78. — Бібліогр.: 6 назв. — укр.