Balanced Metrics and Noncommutative Kähler Geometry

Завантаження...
Ескіз

Дата

Автори

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

In this paper we show how Einstein metrics are naturally described using the quantization of the algebra of functions C∞(M) on a Kähler manifold M. In this setup one interprets M as the phase space itself, equipped with the Poisson brackets inherited from the Kähler 2-form. We compare the geometric quantization framework with several deformation quantization approaches. We find that the balanced metrics appear naturally as a result of requiring the vacuum energy to be the constant function on the moduli space of semiclassical vacua. In the classical limit, these metrics become Kähler-Einstein (when M admits such metrics). Finally, we sketch several applications of this formalism, such as explicit constructions of special Lagrangian submanifolds in compact Calabi-Yau manifolds.

Опис

Теми

Цитування

Balanced Metrics and Noncommutative Kähler Geometry / S. Lukic // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 23 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced