On the Complex Symmetric and Skew-Symmetric Operators with a Simple Spectrum

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

In this paper we obtain necessary and sufficient conditions for a linear bounded operator in a Hilbert space H to have a three-diagonal complex symmetric matrix with non-zero elements on the first sub-diagonal in an orthonormal basis in H. It is shown that a set of all such operators is a proper subset of a set of all complex symmetric operators with a simple spectrum. Similar necessary and sufficient conditions are obtained for a linear bounded operator in H to have a three-diagonal complex skew-symmetric matrix with non-zero elements on the first sub-diagonal in an orthonormal basis in H.

Опис

Теми

Цитування

On the Complex Symmetric and Skew-Symmetric Operators with a Simple Spectrum / S.M. Zagorodnyuk // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 10 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced