Non-Integrability of Some Higher-Order Painlevé Equations in the Sense of Liouville
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
In this paper we study the equation
w⁽⁴⁾=5w′′(w²−w′)+5w(w′)²−⁵+(λz+α)w+γ,
which is one of the higher-order Painlevé equations (i.e., equations in the polynomial class having the Painlevé property). Like the classical Painlevé equations, this equation admits a Hamiltonian formulation, Bäcklund transformations and families of rational and special functions. We prove that this equation considered as a Hamiltonian system with parameters γ/λ=3k, γ/λ=3k−1, k∈Z, is not integrable in Liouville sense by means of rational first integrals. To do that we use the Ziglin-Morales-Ruiz-Ramis approach. Then we study the integrability of the second and third members of the PII-hierarchy. Again as in the previous case it turns out that the normal variational equations are particular cases of the generalized confluent hypergeometric equations whose differential Galois groups are non-commutative and hence, they are obstructions to integrability.
Опис
Теми
Цитування
Non-Integrability of Some Higher-Order Painlevé Equations in the Sense of Liouville / O. Christov, G. Georgiev // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 32 назв. — англ.