Symmetries of the Continuous and Discrete Krichever-Novikov Equation

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

A symmetry classification is performed for a class of differential-difference equations depending on 9 parameters. A 6-parameter subclass of these equations is an integrable discretization of the Krichever-Novikov equation. The dimension n of the Lie point symmetry algebra satisfies 1≤n≤5. The highest dimensions, namely n=5 and n=4 occur only in the integrable cases.

Опис

Теми

Цитування

Symmetries of the Continuous and Discrete Krichever-Novikov Equation / D. Levi, P. Winternitz, R.I. Yamilov // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 31 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced