On Reductions of the Hirota-Miwa Equation
Завантаження...
Файли
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
The Hirota-Miwa equation (also known as the discrete KP equation, or the octahedron recurrence) is a bilinear partial difference equation in three independent variables. It is integrable in the sense that it arises as the compatibility condition of a linear system (Lax pair). The Hirota-Miwa equation has infinitely many reductions of plane wave type (including a quadratic exponential gauge transformation), defined by a triple of integers or half-integers, which produce bilinear ordinary difference equations of Somos/Gale-Robinson type. Here it is explained how to obtain Lax pairs and presymplectic structures for these reductions, in order to demonstrate Liouville integrability of some associated maps, certain of which are related to reductions of discrete Toda and discrete KdV equations.
Опис
Теми
Цитування
On Reductions of the Hirota-Miwa Equation / A.N.W. Hone, T.E. Kouloukas, C. Ward // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 29 назв. — англ.