Inner automorphisms of Lie algebras related with generic 2 × 2 matrices

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут прикладної математики і механіки НАН України

Анотація

Let Fm = Fm(var(sl₂(K))) be the relatively free algebra of rank m in the variety of Lie algebras generated by the algebra sl₂(K) over a field K of characteristic 0. Translating an old result of Baker from 1901 we present a multiplication rule for the inner automorphisms of the completion Fmˆ of Fm with respect to the formal power series topology. Our results are more precise for m = 2 when F₂ is isomorphic to the Lie algebra L generated by two generic traceless 2×2 matrices. We give a complete description of the group of inner automorphisms of Lˆ. As a consequence we obtain similar results for the automorphisms of the relatively free algebra Fm / Fm c⁺¹ = Fm(var(sl₂(K)) ∩ Nc)

Опис

Теми

Цитування

Inner automorphisms of Lie algebras related with generic 2 × 2 matrices / V. Drensky, S. Fındık // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 1. — С. 49-70. — Бібліогр.: 23 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced