On the relation between completeness and H-closedness of pospaces without infinite antichains

Завантаження...
Ескіз

Дата

Автори

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут прикладної математики і механіки НАН України

Анотація

We study the relation between completeness and H-closedness for topological partially ordered spaces. In general, a topological partially ordered space with an infinite antichain which is even directed complete and down-directed complete, is not H-closed. On the other hand, for a topological partially ordered space without infinite antichains, we give necessary and sufficient condition to be H-closed, using directed completeness and down-directed completeness. Indeed, we prove that {a pospace} X is H-closed if and only if each up-directed (resp. down-directed) subset has a supremum (resp. infimum) and, for each nonempty chain L ⊆ X, ⋁ L∈ cl ↓ L and ⋀L ∈ cl ↑ L. This extends a result of Gutik, Pagon, and Repovs [GPR].

Опис

Теми

Цитування

On the relation between completeness and H-closedness of pospaces without infinite antichains / T. Yokoyama // Algebra and Discrete Mathematics. — 2013. — Vol. 15, № 2. — С. 287–294. — Бібліогр.: 3 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced