Строгие квазидополнения и операторы плотного вложения

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

Квазідоповнення М підпростору N банаховому простору Х називається строгим, якщо М не містить нескінченновимірного підпростору М1 такого, що лінійний многовид N+M1 - замкнутий. Доведено, що якщо Х сепарабельний, то N завжди має строге квазівідновлення. Розглянуто властивостей звужень операторів щільного вкладення на нескінченновимірні замкнені підпростори простору, в якому він означений.
A quasicomplement М of a subspace N of a Banach space X is called strict if M does not contain an infinite-dimensional subspace M1, such that the linear manifold N+M1, is closed. It is proved that if X is separable, then N always has a strict quasicomplement. We study the properties of the dense imbedding operator restricted to infinite-dimensional closed subspaces of the space, where it is defined.

Опис

Теми

Статті

Цитування

Строгие квазидополнения и операторы плотного вложения / В.В. Шевчук // Український математичний журнал. — 1994. — Т. 46, № 6. — С. 789–792. — Бібліогр.: 10 назв. — рос.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced