Biserial minor degenerations of matrix algebras over a field

Завантаження...
Ескіз

Дата

Автори

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут прикладної математики і механіки НАН України

Анотація

Let n≥2 be a positive integer, K an arbitrary field, and q=[q⁽¹⁾|…|q⁽ⁿ⁾] an n-block matrix of n×n square matrices q⁽¹⁾,…,q⁽ⁿ⁾ with coefficients in K satisfying the conditions (C1) and (C2) listed in the introduction. We study minor degenerations Mqn(K) of the full matrix algebra Mn(K) in the sense of Fujita-Sakai-Simson [7]. A characterisation of all block matrices q=[q⁽¹⁾|…|q⁽ⁿ⁾] such that the algebra Mqn(K) is basic and right biserial is given in the paper. We also prove that a basic algebra Mqn(K) is right biserial if and only if Mqn(K) is right special biserial. It is also shown that the K-dimensions of the left socle of Mqn(K) and of the right socle of Mqn(K) coincide, in case Mqn(K) is basic and biserial.

Опис

Теми

Цитування

Biserial minor degenerations of matrix algebras over a field / A. Wlodarska // Algebra and Discrete Mathematics. — 2010. — Vol. 9, № 2. — С. 125–137. — Бібліогр.: 18 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced