Ramseyan variations on symmetric subsequences
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут прикладної математики і механіки НАН України
Анотація
A theorem of Dekking in the combinatorics of
words implies that there exists an injective order-preserving transformation f : {0, 1, . . . , n} → {0, 1, . . . , 2n} with the restriction
f(i + 1) ≤ f(i) + 2 such that for every 5-term arithmetic progression P its image f(P) is not an arithmetic progression. In this paper we consider symmetric sets in place of arithmetic progressions
and prove lower and upper bounds for the maximum M = M(n)
such that every f as above preserves the symmetry of at least one
symmetric set S ⊆ {0, 1, . . . , n} with |S| ≥ M.
Опис
Теми
Цитування
Ramseyan variations on symmetric subsequences / O. Verbitsky // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 1. — С. 111–124. — Бібліогр.: 16 назв. — англ.