Symbolic Rees algebras, vertex covers and irreducible representations of Rees cones
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут прикладної математики і механіки НАН України
Анотація
Let G be a simple graph and let Ic(G) be its ideal of vertex covers. We give a graph theoretical description of the irreducible b-vertex covers of G, i.e., we describe the minimal generators of the symbolic Rees algebra of Ic(G). Then we study the irreducible b-vertex covers of the blocker of G, i.e., we study the minimal generators of the symbolic Rees algebra of the edge ideal of G. We give a graph theoretical description of the irreducible binary b-vertex covers of the blocker of G. It is shown that they correspond to irreducible induced subgraphs of G. As a byproduct we obtain a method, using Hilbert bases, to obtain all irreducible induced subgraphs of G. In particular we obtain all odd holes and antiholes. We study irreducible graphs and give a method to construct irreducible b-vertex covers of the blocker of G with high degree relative to the number of vertices of G.
Опис
Теми
Цитування
Symbolic Rees algebras, vertex covers and irreducible representations of Rees cones / L.A. Dupont, R.H. Villarreal // Algebra and Discrete Mathematics. — 2010. — Vol. 10, № 2. — С. 64–86. — Бібліогр.: 30 назв. — англ.