Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. II
Завантаження...
Дата
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут прикладної математики і механіки НАН України
Анотація
The main concept of this part of the paper is
that of a reduced exponent matrix and its quiver, which is strongly
connected and simply laced. We give the description of quivers of
reduced Gorenstein exponent matrices whose number s of vertices
is at most 7. For 2 ≤ 6 s ≤ 5 we have that all adjacency matrices of
such quivers are multiples of doubly stochastic matrices. We prove
that for any permutation σ on n letters without fixed elements
there exists a reduced Gorenstein tiled order Λ with σ(ε) = σ.
We show that for any positive integer k there exists a Gorenstein
tiled order Λk with inΛk = k. The adjacency matrix of any cyclic
Gorenstein order Λ is a linear combination of powers of a permutation matrix Pσ with non-negative coefficients, where σ = σ(Λ).
If A is a noetherian prime semiperfect semidistributive ring of a
finite global dimension, then Q(A) be a strongly connected simply
laced quiver which has no loops.
Опис
Теми
Цитування
Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. II / Zh.T. Chernousova, M.A. Dokuchaev, M.A. Khibina, V.V. Kirichenko, S.G. Miroshnichenko, V.N. Zhuravlev // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 2. — С. 47–86. — Бібліогр.: 44 назв. — англ.