A machine learning approach to the Berezinskii-Kosterlitz-Thouless transition in classical and quantum models

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут фізики конденсованих систем НАН України

Анотація

The Berezinskii-Kosterlitz-Thouless transition is a very specific phase transition where all thermodynamic quantities are smooth. Therefore, it is difficult to determine the critical temperature in a precise way. In this paper we demonstrate how neural networks can be used to perform this task. In particular, we study how the accuracy of the transition identification depends on the way the neural networks are trained. We apply our approach to three different systems: (i) the classical XY model, (ii) the phase-fermion model, where classical and quantum degrees of freedom are coupled and (iii) the quantum XY model.
Перехiд Березинського-Костерлiца-Таулесса є дуже специфiчним фазовим переходом, при якому всi термодинамiчнi величини є неперервними. Тому важко точно визначити критичну температуру. У цiй статтi нами показано, як можна використати нейроннi мережi для розв’язання цього завдання. Зокрема, дослiджено, до якої мiри точнiсть розпiзнавання переходу залежить вiд способу навчання нейронних мереж. Ми застосовуємо наш пiдхiд до трьох рiзних систем: (i) класична XY модель, (ii) фазово-фермiонна модель iз взаємодiєю мiж класичними й квантовими ступенями вiльностi та (iii) квантова XY модель.

Опис

Теми

Цитування

A machine learning approach to the Berezinskii-Kosterlitz-Thouless transition in classical and quantum models / M. Richter-Laskowska, H. Khan, N. Trivedi, M.M. Maśka // Condensed Matter Physics. — 2018. — Т. 21, № 3. — С. 33602: 1–11. — Бібліогр.: 32 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced