Criterions of supersolubility of some finite factorizable groups

Завантаження...
Ескіз

Дата

Автори

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут прикладної математики і механіки НАН України

Анотація

Let A, B be subgroups of a group G and ∅ 6= X ⊆ G. A subgroup A is said to be X-permutable with B if for some x ∈ X we have ABx = BxA [1]. We obtain some new criterions for supersolubility of a finite group G = AB, where A and B are supersoluble groups. In particular, we prove that a finite group G = AB is supersoluble provided A, B are supersolube subgroups of G such that every primary cyclic subgroup of A X-permutes with every Sylow subgroup of B and if in return every primary cyclic subgroup of B X-permutes with every Sylow subgroup of A where X = F(G) is the Fitting subgroup of G.

Опис

Теми

Цитування

Criterions of supersolubility of some finite factorizable groups / H.V. Legchekova // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 3. — С. 46–55. — Бібліогр.: 16 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced