Criterions of supersolubility of some finite factorizable groups
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут прикладної математики і механіки НАН України
Анотація
Let A, B be subgroups of a group G and ∅ 6= X ⊆
G. A subgroup A is said to be X-permutable with B if for some
x ∈ X we have ABx = BxA [1]. We obtain some new criterions
for supersolubility of a finite group G = AB, where A and B are
supersoluble groups. In particular, we prove that a finite group
G = AB is supersoluble provided A, B are supersolube subgroups
of G such that every primary cyclic subgroup of A X-permutes with
every Sylow subgroup of B and if in return every primary cyclic
subgroup of B X-permutes with every Sylow subgroup of A where
X = F(G) is the Fitting subgroup of G.
Опис
Теми
Цитування
Criterions of supersolubility of some finite factorizable groups / H.V. Legchekova // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 3. — С. 46–55. — Бібліогр.: 16 назв. — англ.