Presentations and word problem for strong semilattices of semigroups

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут прикладної математики і механіки НАН України

Анотація

Let I be a semilattice, and Si (i ∈ I) be a family of disjoint semigroups. Then we prove that the strong semilattice S = S[I, Si , φj,i] of semigroups Si with homomorphisms φj,i : Sj → Si (j ≥ i) is finitely presented if and only if I is finite and each Si (i ∈ I) is finitely presented. Moreover, for a finite semilattice I, S has a soluble word problem if and only if each Si (i ∈ I) has a soluble word problem. Finally, we give an example of nonautomatic semigroup which has a soluble word problem.

Опис

Теми

Цитування

Presentations and word problem for strong semilattices of semigroups / G. Ayık, H. Ayık, Y. Unlu // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 4. — С. 28–35. — Бібліогр.: 11 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced