On Frobenius full matrix algebras with structure systems
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут прикладної математики і механіки НАН України
Анотація
Let n ≥ 2 be an integer. In [5] and [6], an n × n
A-full matrix algebra over a field K is defined to be the set Mn(K)
of all square n × n matrices with coefficients in K equipped with a
multiplication defined by a structure system A, that is, an n-tuple
of n × n matrices with certain properties. In [5] and [6], mainly
A-full matrix algebras having (0, 1)-structure systems are studied,
that is, the structure systems A such that all entries are 0 or 1.
In the present paper we study A-full matrix algebras having non
(0, 1)-structure systems. In particular, we study the Frobenius Afull matrix algebras. Several infinite families of such algebras with
nice properties are constructed in Section 4.
Опис
Теми
Цитування
On Frobenius full matrix algebras with structure systems / H. Fujita, Y. Sakai, D. Simson // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 1. — С. 24–39. — Бібліогр.: 13 назв. — англ.