On closed rational functions in several variables

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут прикладної математики і механіки НАН України

Анотація

Let K = K¯ be a field of characteristic zero. An element ϕ ∈ K(x1,... ,xn) is called a closed rational function if the subfield K(ϕ) is algebraically closed in the field K(x1,... ,xn). We prove that a rational function ϕ = f/g is closed if f and g are algebraically independent and at least one of them is irreducible. We also show that a rational function ϕ = f/g is closed if and only if the pencil αf + βg contains only finitely many reducible hypersurfaces. Some sufficient conditions for a polynomial to be irreducible are given.

Опис

Теми

Цитування

On closed rational functions in several variables / A.P. Petravchuk, O.G. Iena // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 115–124. — Бібліогр.: 10 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced