Существование функционалов Ляпунова–Красовского для стохастических дифференциально-функциональных уравнений Ито–Скорохода при условии устойчивости решений по вероятности с конечным последействием
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут кібернетики ім. В.М. Глушкова НАН України
Анотація
Установлено, что для динамических систем случайной структуры с конечной предысторией, обладающих свойством той или иной вероятностной устойчивости, существуют функционалы Ляпунова–Красовского с определенными свойствами.
Встановлено, що для динамічних систем випадкової структури зі скінченною передісторією, які мають властивість тієї чи іншої ймовірнісної стійкості, існують функціонали Ляпунова–Красовського з певними властивостями.
In the paper, it is established that for dynamic systems of random structure with finite prehistory and with the property of one or another probability stability, there exist Lyapunov–Krasovskii functionals with definite properties.
Встановлено, що для динамічних систем випадкової структури зі скінченною передісторією, які мають властивість тієї чи іншої ймовірнісної стійкості, існують функціонали Ляпунова–Красовського з певними властивостями.
In the paper, it is established that for dynamic systems of random structure with finite prehistory and with the property of one or another probability stability, there exist Lyapunov–Krasovskii functionals with definite properties.
Опис
Теми
Системний аналіз
Цитування
Существование функционалов Ляпунова–Красовского для стохастических дифференциально-функциональных уравнений Ито–Скорохода при условии устойчивости решений по вероятности с конечным последействием / И.В. Юрченко, В.К. Ясинский // Кибернетика и системный анализ. — 2018. — Т. 54, № 6. — С. 119-133. — Бібліогр.: 28 назв. — рос.