Мінімальні за Lp-нормою лінійні сплайни

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут кібернетики ім. В.М. Глушкова НАН України

Анотація

Вивчаються задачі безумовної мінімізації опуклих функцій для знаходження мінімальних за Lp-нормою лінійних сплайнів для випадків p ≥ 1 та 1 < p ≤ 2. Якщо p ≥ 1, то використовується негладка функція, а якщо 1 < p ≤ 2 – гладка функція. Показано, що при певному виборі параметра p оптимізаційні задачі породжують відомі методи – метод найменших квадратів, метод найменших модулів та мінімаксний чебишевський метод. Наведено властивості розв'язків задачі для випадку 1 < p ≤ 2.
Изучаются задачи безусловной минимизации выпуклых функций для нахождения минимальных в Lp-норме линейных сплайнов для случаев p ≥ 1 и 1 < p ≤ 2. Если p ≥ 1, то используется негладкая функция, а если 1 < p ≤ 2 – гладкая функция. Показано, что при определенном выборе параметра p оптимизационные задачи порождают известные методы – метод наименьших квадратов, метод наименьших модулей и минимаксный чебышевский метод. Приведены свойства решений задачи для случая 1 < p ≤ 2
Problems of unconstrained minimization of convex functions for finding the minimal linear splines in Lp-norm for cases p ≥ 1 and 1 < p ≤ 2 are investigated. If p ≥ 1, then the non-smooth function is used, and if 1 < p ≤ 2 then the smooth function is used. It is shown, that with a certain choice of parameter p , the optimization problems generate the known methods: the method of least squares, the method of least absolute deviations, and the Chebyshev minimax method. The properties of solutions of problems with 1 < p ≤ 2 are given.

Опис

Теми

Цитування

Мінімальні за Lp-нормою лінійні сплайни / П.І. Стецюк, О.М. Хом’як // Теорія оптимальних рішень: Зб. наук. пр. — 2019. — № 18. — С. 28-33. — Бібліогр.: 9 назв. — укр.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced