Сверточные нейронные сети в задачах мониторинга состояния сельскохозяйственной растительности по данным аэрофотосъемки

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут проблем штучного інтелекту МОН України та НАН України

Анотація

В данной работе рассматривается задача распознавания состояния сельскохозяйственной раститель-ности по данным аэрофотосъемки различного пространственного разрешения. В качестве основы для рас-познавания используется классификатор, позволяющий осуществлять классификацию входного изображе-ния на три класса: «здоровая растительность», «пораженная растительность» и «почва». Предложенный классификатор строится из двух сверточных нейронных сетей, позволяющих выполнять классификацию на два класса: «здоровая растительность» и «пораженная растительность», «растительность» и «почва».
In the article a recognition task of agricultural vegetation using aerial images of different spatial resolution is considered. An image classifier is proposed that allows classifying image segments into three classes: “healthy vegeta-tion”, “diseased vegetation” and “soil”. This classifier is implemented by two convolution neural networks that previ-ously form two classes of vegetation state: “healthy vegetation”-“diseased vegetation” and “vegetation”-“soil”.

Опис

Теми

Прикладні інтелектуальні технології та системи

Цитування

Сверточные нейронные сети в задачах мониторинга состояния сельскохозяйственной растительности по данным аэрофотосъемки / В.В. Ганченко, А.А. Дудкин // Штучний інтелект. — 2018. — № 3 (81). — С. 103-110. — Бібліогр.: 22 назв. — рос.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced