Теорема Хелли и смежные результаты
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
З класичної теореми Хеллі неможна одержати інформацію про сім'ю опуклих компактів в n- вимірному евклідовому просторі, якщо відомо, що непусті перетини мають тільки підсім'ї, що складаються з k елементів, 0<k<n. Уточнено теорему Хеллі для такого випадку, а також досліджено поведінку узагальнено опуклих сімей.
By using the classical Helly theorem, one cannot obtain information about a family of convex compact sets in the n-dimensional Euclidean space if it is known that only subfamilies consisting of k elements, 0 < k ≤ n, have nonempty intersections. We modify the Helly theorem to fix this issue and investigate the behavior of generalized convex families.
By using the classical Helly theorem, one cannot obtain information about a family of convex compact sets in the n-dimensional Euclidean space if it is known that only subfamilies consisting of k elements, 0 < k ≤ n, have nonempty intersections. We modify the Helly theorem to fix this issue and investigate the behavior of generalized convex families.
Опис
Теми
Короткі повідомлення
Цитування
Теорема Хелли и смежные результаты / Ю.Б. Зелинский // Український математичний журнал. — 2002. — Т. 54, № 1. — С. 125–128. — Бібліогр.: 3 назв. — рос.