Щільність множини задач Коші з неєдиними розв'язками у множині всіх задач Коші
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Український математичний журнал
Анотація
Доказана следующая теорема. Пусть E — произвольное банахово пространство, G — открытое множество в прост- ранстве R×E и f:G→E — произвольное непрерывное отображение. Тогда для произвольных точки (t0,x0)∈G и числа ε>0 существует такое непрерывное отображение g:G→E, что имеет более чем одно решение.
We prove the following theorem: Let E be an arbitrary Banach space, let G be an open set in the space R×E, and let f: G → E be an arbitrary continuous mapping. Then, for an arbitrary point (t 0, x 0) ∈ G and an arbitrary number ε > 0, there exists a continuous mapping g: G → E such that has more than one solution.
We prove the following theorem: Let E be an arbitrary Banach space, let G be an open set in the space R×E, and let f: G → E be an arbitrary continuous mapping. Then, for an arbitrary point (t 0, x 0) ∈ G and an arbitrary number ε > 0, there exists a continuous mapping g: G → E such that has more than one solution.
Опис
Теми
Короткі повідомлення
Цитування
Щільність множини задач Коші з неєдиними розв'язками у множині всіх задач Коші / В.Ю. Слюсарчук // Український математичний журнал. — 2012. — Т. 64, № 7. — С. 1001-1006. — Бібліогр.: 18 назв. — укр.