Интегральные многообразия и экспоненциальное расщепле­ние линейных параболических уравнений с быстро меняющимися коэффициен­тами

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

Розглядаються лінійні параболічні рівняння з швидко змінними коефіцієнтами. Припускається, що відповідне вихідному усереднене рівняння допускає експоненціальне розщеплення. Виясня­ються умови, за яких вихідне рівняння також допускає експоненціальне розщеплення. Вста­новлено важливу роль інтегральних многовидів у побудові перетворення, що здійснює розщеп­лення розглядуваних рівнянь. При доведенні існування інтегральних многовидів використову­ються результати В. В. Жикова по обгрунтуванню метода усереднення для лінійних параболічних рівнянь.
We study linear parabolic equations with rapidly varying coefficients. It is assumed that the averaged equation corresponding to the source equation admits exponential splitting. We establish conditions under which the source equation also admits exponential splitting. It is shown that integral manifolds play an important role in constructing transformations that split the equations under consideration. To prove the existence of integral manifolds, we apply Zhikov's results on the justification of the averaging method for linear parabolic equations.

Опис

Теми

Статті

Цитування

Интегральные многообразия и экспоненциальное расщепле­ние линейных параболических уравнений с быстро меняющимися коэффициен­тами / Е.П. Белан, О.Б. Лыкова // Український математичний журнал. — 1995. — Т. 47, № 12. — С. 1593–1608. — Бібліогр.: 13 назв. — рос.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced