О поведении потенциала простого слоя для параболического уравнения на римановом многообразии
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
Параболічне рівняння розглядається на римановому многовиді недодатньої секційної кривизни непозитивного перерізу (многовиди типу Картана - Адамарада). Друга крайова задача цього рівняння задається в обмеженій області, поверхня якої є гладкою підмножиною. Доведено, що градієнт одношарового потенціалу для такої задачі має стрибок при переході через підмноговиди аналогічно його поведінці в евклідовому просторі.
A parabolic equation is considered on a Riemannian manifold of nonpositive section curvature (a Cartan – Hadamard-type manifold). The second boundary-value problem for this equation is set in a bounded domain whose surface is a smooth submanifold. It is proved that the gradient of the singlelayer potential for such problem possesses a jump in crossing the submanifold similarly to its behavior in the Euclidean space.
A parabolic equation is considered on a Riemannian manifold of nonpositive section curvature (a Cartan – Hadamard-type manifold). The second boundary-value problem for this equation is set in a bounded domain whose surface is a smooth submanifold. It is proved that the gradient of the singlelayer potential for such problem possesses a jump in crossing the submanifold similarly to its behavior in the Euclidean space.
Опис
Теми
Статті
Цитування
О поведении потенциала простого слоя для параболического уравнения на римановом многообразии / Ю.Н. Бернацька // Український математичний журнал. — 2008. — Т. 60, № 7. — С. 879–891. — Бібліогр.: 10 назв. — рос.