До теореми Скитовича- Дармуа на абелевих групах
Завантаження...
Файли
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
Доведено теореми, що узагальнюють теорему Скитовича - Дармуа на випадок, коли незалежні випадкові величини ξj,j=1,2,...,n,n≥2, набувають значень у локально компактній абелевій групі, а коефіцієнти αj,βj- лінійних форм L₁=α₁ξ₁+...+αnξn та L₂=β₁ξ₁+...+βnξn є антоморфізмами групи.
We prove theorems that generalize the Skitovich-Darmois theorem to the case where independent random variables ξj, j = 1, 2, ..., n, n ≥ 2, take values in a locally compact Abelian group and the coefficients αj and βj of the linear forms L₁ = α₁ξ₁ + ... + αnξn and L₂ = β₁ξ₁ + ... + βnξn are automorphisms of this group.
We prove theorems that generalize the Skitovich-Darmois theorem to the case where independent random variables ξj, j = 1, 2, ..., n, n ≥ 2, take values in a locally compact Abelian group and the coefficients αj and βj of the linear forms L₁ = α₁ξ₁ + ... + αnξn and L₂ = β₁ξ₁ + ... + βnξn are automorphisms of this group.
Опис
Теми
Статті
Цитування
До теореми Скитовича- Дармуа на абелевих групах / М.В. Миронюк // Український математичний журнал. — 2004. — Т. 56, № 10. — С. 1342–1356. — Бібліогр.: 19 назв. — укр.