Littlewood–Paley theorem on spaces Lp(t)(ℝⁿ)

Завантаження...
Ескіз

Дата

Автори

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

We point out that if the Hardy–Littlewood maximal operator is bounded on the space Lp(t)(ℝ), 1 < a ≤ p(t) ≤ b < ∞, t ∈ ℝ, then the well-known characterization of the spaces Lp(ℝ), 1 < p < ∞, by the Littlewood–Paley theory extends to the space L p(t)(ℝ). We show that, for n > 1 , the Littlewood–Paley operator is bounded on Lp(t) (ℝⁿ), 1 < a ≤ p(t) ≤ b < ∞, t ∈ ℝⁿ, if and only if p(t) = const.
Встановлено, що коли максимальний оператор Харді - Літтлвуда обмежений на просторі Lp(t)(Rⁿ), 1<a ≤ p(t) ≤ b < ∞,t∈R, добре відома характеризація просторів Lp(t)(Rⁿ),1<p<∞ теорією Літтлвуда - Пелі поширюється на простір Lp(t)(Rⁿ). Показано, що у випадку n>1, оператор Літтлвуда - Пелі обмежений на Lp(t)(Rⁿ),1 < a ≤ p(t) ≤ b<∞,t ∈ R, тоді і тільки тоді, коли p(t)= const.

Опис

Теми

Короткі повідомлення

Цитування

Littlewood–Paley theorem on spaces Lp(t)(ℝⁿ) / T.S. Kopaliani // Український математичний журнал. — 2008. — Т. 60, № 12. — С. 1709–1715. — Бібліогр.: 13 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced