Частичная асимптотическая устойчивость абстрактных дифференциальных уравнений

Завантаження...
Ескіз

Дата

Автори

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

Розглядається задача про часткову асимптотичну стійкість по відношенню до неперервного функціонала для класу абстрактних динамічних процесів із багатозначними розв'язками на метричному просторі. Вказаний клас процесів містить скінченно- та нескінченновимірні динамічні системи, диференціальні включення, рівняння із загаюванням. Доведено узагальнення теореми Барбашина-Красовського та принципу інваріантності Лаcалля в умовах існування неперервного функціонала Ляпунова. У випадку існування диференційовного функціонала Ляпунова отримано достатні умови часткової стійкості неперервних напівгруп у банаховому просторі.
We consider the problem of partial asymptotic stability with respect to a continuous functional for a class of abstract dynamical processes with multivalued solutions on a metric space. This class of processes includes finite-and infinite-dimensional dynamical systems, differential inclusions, and delay equations. We prove a generalization of the Barbashin-Krasovskii theorem and the LaSalle invariance principle under the conditions of the existence of a continuous Lyapunov functional. In the case of the existence of a differentiable Lyapunov functional, we obtain sufficient conditions for the partial stability of continuous semigroups in a Banach space.

Опис

Теми

Статті

Цитування

Частичная асимптотическая устойчивость абстрактных дифференциальных уравнений / А.Л. Зуев // Український математичний журнал. — 2006. — Т. 58, № 5. — С. 629–637. — Бібліогр.: 15 назв. — рос.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced