Тривимірні матричні суперпотенціали

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Український математичний журнал

Анотація

Представлена классификация матричных суперпотенциалов, которые соответствуют точно решаемым системам уравнений Шредингера. Рассмотрены суперпотенциалы вида Wk=kQ+P+R*(1/k), где k — параметр, P,Q и R — эрмитовые матрицы, зависящие от переменной x. Список трехмерных матричных суперпотенциалов приведен в явном виде.
We present a classification of matrix superpotentials that correspond to exactly solvable systems of Schrödinger equations. Superpotentials of the form Wk=kQ+P+R*(1/k) are considered, where k is a parameter and P, Q, and R are Hermitian matrices that depend on a variable x. The list of three-dimensional matrix superpotentials is presented in explicit form.

Опис

Теми

Статті

Цитування

Тривимірні матричні суперпотенціали / Ю.А. Караджов // Український математичний журнал. — 2012. — Т. 64, № 12. — С. 1641-1640. — Бібліогр.: 16 назв. — укр.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced