Fredholm Solvability of a Periodic Neumann Problem for a Linear Telegraph Equation

Завантаження...
Ескіз

Дата

Автори

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

We investigate a periodic problem for the linear telegraph equation utt − uxx + 2µut = f(x, t) with Neumann boundary conditions. We prove that the operator of the problem is modeled by a Fredholm operator of index zero in the scale of Sobolev spaces of periodic functions. This result is stable under small perturbations of the equation where µ becomes variable and discontinuous or an additional zero-order term appears. We also show that the solutions of this problem possess smoothing properties.
Дослiджується перiодична задача для лiнiйного телеграфного рiвняння utt − uxx + 2µut = f(x, t) з крайовими умовами Неймана. Доведено, що оператор задачi моделюється фредгольмовим оператором нульового iндексу у шкалi просторiв Соболєва перiодичних функцiй. Цей результат є стiйким щодо малих збурень рiвняння, де µ стає змiнною i розривною або з’являється додатковий член нульового порядку. Також показано, що розв’язки задачi мають властивiсть пiдвищення гладкостi.

Опис

Теми

Статті

Цитування

Fredholm Solvability of a Periodic Neumann Problem for a Linear Telegraph Equation / I. Kmit // Український математичний журнал. — 2013. — Т. 65, № 3. — С. 381-391. — Бібліогр.: 24 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced