О предельном поведении возмущений в окрестности сингулярной точки последовательности марковских процессов

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

Досліджується гранична поведінка послідовності марковських процесів, розподіл яких ззовні довільного околу певної „сингулярної" точки притягується до певного закону. В околі цієї точки поведінка може бути нерегулярною. Як приклад застосування загального результату досліджено симетричне випадкове блукання з одиничним кроком, збурене в околі нуля. При стандартному нормуванні часової та просторової змінних встановлено принцип інваріантності, де граничним процесом є косий броунівський рух.
We study the limit behavior of a sequence of Markov processes whose distributions outside any neighborhood of a “singular” point are attracted to a certain probability law. In any neighborhood of this point, the limit behavior can be irregular. As an example of application of the general result, we consider a symmetric random walk with unit jumps perturbed in the neighborhood of the origin. The invariance principle is established for the standard time and space scaling. The limit process is a skew Brownian motion.

Опис

Теми

Статті

Цитування

О предельном поведении возмущений в окрестности сингулярной точки последовательности марковских процессов / А.Ю. Пилипенко, Ю.Е. Приходько // Український математичний журнал. — 2015. — Т. 67, № 4. — С. 499–516. — Бібліогр.: 21 назв. — рос.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced