Кiльця Безу стабiльного рангу 1.5
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
Кольцо R имеет стабильный ранг 1,5, если для каждой тройки ненулевых взаимно простых слева элементов а,b,c этого кольца существует такое r, что элементы a+br, c взаимно просты слева. Пусть R — коммутативная область Безу. Доказано, что кольцо M₂(R) имеет стабильный ранг 1,5 тогда и только тогда, когда кольцо R имеет тот же стабильный ранг.
A ring R has a stable range 1.5 if, for every triple of left relatively prime nonzero elements a, b, and c in R, there exists r such that the elements a+br and c are left relatively prime. Let R be a commutative Bezout domain. We prove that the matrix ring M₂(R) has the stable range 1.5 if and only if the ring R has the same stable range.
A ring R has a stable range 1.5 if, for every triple of left relatively prime nonzero elements a, b, and c in R, there exists r such that the elements a+br and c are left relatively prime. Let R be a commutative Bezout domain. We prove that the matrix ring M₂(R) has the stable range 1.5 if and only if the ring R has the same stable range.
Опис
Теми
Статті
Цитування
Кiльця Безу стабiльного рангу 1.5 / В.П. Щедрик // Український математичний журнал. — 2015. — Т. 67, № 6. — С. 849–860. — Бібліогр.: 21 назв. — укр.