Класифікація скінченних комутативних напівгруп, для яких інверсний моноїд локальних автоморфізмів є Δ-напівгрупою
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
Полугруппа S называется ∆-полугруппой, если решетка ее конгруэнций образует цепь относительно включения. Локальным автоморфизмом полугруппы S называют изоморфизм между двумя ее подполугруппами. Множество всех локальных автоморфизмов полугруппы S относительно обычной операции композиции бинарных отношений образует инверсный моноид локальных автоморфизмов. В данной статье дана классификация конечных коммутативных полугрупп, для которых инверсный моноид локальных автоморфизмов является ∆-полугруппой.
A semigroup S is called a ∆-semigroup if the lattice of its congruences forms a chain relative to the inclusion. A local automorphism of the semigroup S is called an isomorphism between its two subsemigroups. The set of all local automorphisms of the semigroup S relative to the ordinary operation of composition of binary relations forms an inverse monoid of local automorphisms. We present a classification of finite commutative semigroups for which the inverse monoid of local automorphisms is a ∆-semigroup.
A semigroup S is called a ∆-semigroup if the lattice of its congruences forms a chain relative to the inclusion. A local automorphism of the semigroup S is called an isomorphism between its two subsemigroups. The set of all local automorphisms of the semigroup S relative to the ordinary operation of composition of binary relations forms an inverse monoid of local automorphisms. We present a classification of finite commutative semigroups for which the inverse monoid of local automorphisms is a ∆-semigroup.
Опис
Теми
Статті
Цитування
Класифікація скінченних комутативних напівгруп, для яких інверсний моноїд локальних автоморфізмів є Δ-напівгрупою / В.Д. Дереч // Український математичний журнал. — 2015. — Т. 67, № 7. — С. 867–873. — Бібліогр.: 27 назв. — укр.