О сохранении порядка уплощения индуцированным диффеоморфизмом

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

Розглядається будова гладкої кривої з точки зору поняття сплощення. Наведено умови, за яких r-геодезична крива базисного многовиду є проекцією r-геодезичної кривої в дотичному розшаруванні другого порядку. Встановлено необхідну i достатню умову, при якій 2-геодезичний диФєоморФізм афінно зв'язних просторів індукує 2-геодезичний диФєоморФізм дотичних розшарувань другого порядку.
We consider the structure of a smooth curve from the viewpoint of the concept of flattening and establish conditions under which an r-geodesic curve of the base manifold is the projection of the r-geodesic curve in a tangent bundle of the second order. The necessary and sufficient condition under which a 2-geodesic diffeomorphism of affine-connected spaces induces a 2-geodesic diffeomorphism of tangent bundles of the second order is established.

Опис

Теми

Статті

Цитування

О сохранении порядка уплощения индуцированным диффеоморфизмом / К.М. Зубрилин // Український математичний журнал. — 2013. — Т. 65, № 11. — С. 1482–1497. — Бібліогр.: 8 назв. — рос.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced