Мішані задачі для двовимірного рівняння теплопровідності в анізотропних просторах Хермандера

Завантаження...
Ескіз

Дата

Автори

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

Для некоторых анизотропных пространств Хермандера установлены теоремы о корректной разрешимости начально-краевых задач для двумерного уравнения теплопроводности с краевыми условиями Дирихле и Неймана. Регулярность функций, образующих эти пространства, характеризуется парой числовых параметров и функциональным параметром, медленно меняющимся на бесконечности по Карамата. Последний, по сравнению с соболевской шкалой, позволяет более тонко охарактеризовать регулярность функций.
For some anisotropic inner-product Hörmander spaces, we prove the theorems on well-posedness of initial-boundary-value problems for the two-dimensional heat-conduction equation with Dirichlet or Neumann boundary conditions. The regularity of the functions from these spaces is characterized by a couple of numerical parameters and a function parameter regularly varying at infinity in Karamata’s sense and characterizing the regularity of functions more precisely than in the Sobolev scale.

Опис

Теми

Статті

Цитування

Мішані задачі для двовимірного рівняння теплопровідності в анізотропних просторах Хермандера / В.М. Лось // Український математичний журнал. — 2015. — Т. 67, № 5. — С. 645–656. — Бібліогр.: 30 назв. — укр.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced