Finite-dimensional subalgebras in polynomial Lie algebras of rank one
Завантаження...
Дата
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
Let Wn(K) be the Lie algebra of derivations of the polynomial algebra K[X] := K[x1, . . . , xn] over an
algebraically closed field K of characteristic zero. A subalgebra L ⊆ Wn(K) is called polynomial if it is
a submodule of the K[X]-module Wn(K). We prove that the centralizer of every nonzero element in L is
abelian provided that L is of rank one. This fact allows to classify finite-dimensional subalgebras in polynomial
Lie algebras of rank one.
Нехай Wn(K) — алгебра Лi диференцiювань полiномiальної алгебри K[X] := K[x1, . . . , xn] над алгебраїчно замкненим полем K характеристики нуль. Пiдалгебра L ⊆ Wn(K) називається полiномiальною, якщо вона є пiдмодулем K[X]-модуля Wn(K). Доведено, що централiзатор кожного ненульового елемента з L є абелевим у випадку, коли L має ранг 1. Це дає можливiсть класифiкувати скiнченновимiрнi пiдалгебри полiномiальних алгебр Лi рангу 1.
Нехай Wn(K) — алгебра Лi диференцiювань полiномiальної алгебри K[X] := K[x1, . . . , xn] над алгебраїчно замкненим полем K характеристики нуль. Пiдалгебра L ⊆ Wn(K) називається полiномiальною, якщо вона є пiдмодулем K[X]-модуля Wn(K). Доведено, що централiзатор кожного ненульового елемента з L є абелевим у випадку, коли L має ранг 1. Це дає можливiсть класифiкувати скiнченновимiрнi пiдалгебри полiномiальних алгебр Лi рангу 1.
Опис
Теми
Короткі повідомлення
Цитування
Finite-dimensional subalgebras in polynomial Lie algebras of rank one / I.V. Arzhantsev, E.A. Makedonskii, A.P. Petravchuk // Український математичний журнал. — 2011. — Т. 63, № 5. — С. 708–712. — Бібліогр.: 6 назв. — англ.