Extremal decomposition of multidimensional complex space for five domains

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут прикладної математики і механіки НАН України

Анотація

The paper is devoted to one open extremal problem in the geometric function theory of complex variables associated with estimates of a functional defined on the systems of non-overlapping domains. We consider the problem of the maximum of a product of inner radii of n non-overlapping domains containing points of a unit circle and the power γ of the inner radius of a domain containing the origin. The problem was formulated in 1994 in Dubinin’s paper in the journal “Russian Mathematical Surveys” in the list of unsolved problems and then repeated in his monograph in 2014. Currently, it is not solved in general. In this paper, we obtained a solution of the problem for five simply connected domains and power γ ∈ (1, 2.57] and generalized this result to the case of multidimensional complex space.

Опис

Теми

Цитування

Extremal decomposition of multidimensional complex space for five domains / Y. Zabolotnii, I. Denega // Український математичний вісник. — 2018. — Т. 15, № 3. — С. 431-441. — Бібліогр.: 21 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced