On the structure of Leidniz algebras, whose subalgebras are ideals or core-free
Завантаження...
Дата
Назва журналу
Номер ISSN
Назва тому
Видавець
Видавничий дім "Академперіодика" НАН України
Анотація
An algebra L over a field F is said to be a Leibniz algebra (more precisely, a left Leibniz algebra), if it satisfies
the Leibniz identity: [[a, b], c] = [a, [b, c]] — [b, [a, c]] for all a, b, c ∈ L. Leibniz algebras are generalizations of
Lie algebras. A subalgebra S of a Leibniz algebra L is called core-free, if S does not include the non-zero ideal.
We study the Leibniz algebras, whose subalgebras are either ideals or core-free.
Aлгебра L над полем F називається алгеброю Лейбніца (точніше, лівою алгеброю Лейбніца), якщо вона задовольняє таку тотожність Лейбніца: [[a, b], c] = [a, [b, c]] – [b, [a, c]] для всіх a, b, c ∈ L. Алгебри Лейбніца являють собою узагальнення алгебр Лі. Підалгебра S алгебри Лейбніца L називається вільною від ядра, якщо S не містить ненульових ідеалів. Розглянуто алгебри Лейбніца, усі підалгебри яких є ідеалами або вільними від ядра.
Aлгебра L над полем F називається алгеброю Лейбніца (точніше, лівою алгеброю Лейбніца), якщо вона задовольняє таку тотожність Лейбніца: [[a, b], c] = [a, [b, c]] – [b, [a, c]] для всіх a, b, c ∈ L. Алгебри Лейбніца являють собою узагальнення алгебр Лі. Підалгебра S алгебри Лейбніца L називається вільною від ядра, якщо S не містить ненульових ідеалів. Розглянуто алгебри Лейбніца, усі підалгебри яких є ідеалами або вільними від ядра.
Опис
Теми
Математика
Цитування
On the structure of Leidniz algebras, whose subalgebras are ideals or core-free / V.A. Chupordia, L.A. Kurdachenko, N.N. Semko // Доповіді Національної академії наук України. — 2020. — № 7. — С. 17-21. — Бібліогр.: 9 назв. — англ.