Planarity of a spanning subgraph of the intersection graph of ideals of a commutative ring I, nonquasilocal case

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут прикладної математики і механіки НАН України

Анотація

The rings considered in this article are nonzero commutative with identity which are not fields. Let R be a ring. We denote the collection of all proper ideals of R by I(R) and the collection I(R)\{(0)} by I(R)*. Recall that the intersection graph of ideals of R, denoted by G(R), is an undirected graph whose vertex set is I(R)* and distinct vertices I, J are adjacent if and only if I ∩ J ≠ (0). In this article, we consider a subgraph of G(R), denoted by H(R), whose vertex set is I(R)* and distinct vertices I, J are adjacent in H(R) if and only if IJ ≠ (0). The purpose of this article is to characterize rings R with at least two maximal ideals such that H(R) is planar.

Опис

Теми

Цитування

Planarity of a spanning subgraph of the intersection graph of ideals of a commutative ring I, nonquasilocal case / P. Vadhel, S. Visweswaran // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 1. — С. 130–143. — Бібліогр.: 19 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced