Solutions of the matrix linear bilateral polynomial equation and their structure

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут прикладної математики і механіки НАН України

Анотація

We investigate the row and column structure of solutions of the matrix polynomial equation A(λ)X(λ) + Y (λ)B(λ) = C(λ), where A(λ),B(λ) and C(λ) are the matrices over the ring of polynomials F[λ] with coefficients in field F. We establish the bounds for degrees of the rows and columns which depend on degrees of the corresponding invariant factors of matrices A(λ) and B(λ). A criterion for uniqueness of such solutions is pointed out. A method for construction of such solutions is suggested. We also established the existence of solutions of this matrix polynomial equation whose degrees are less than degrees of the Smith normal forms of matrices A(λ) and B(λ).

Опис

Теми

Цитування

Solutions of the matrix linear bilateral polynomial equation and their structure / N.S. Dzhaliuk, V.M. Petrychkovych // Algebra and Discrete Mathematics. — 2019. — Vol. 27, № 2. — С. 243–251. — Бібліогр.: 14 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced