Some properties of E(G,W,FTG) and an application in the theory of splittings of groups
Завантаження...
Файли
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут прикладної математики і механіки НАН України
Анотація
Let us consider W a G-set and M a Z₂G-module, where G is a group. In this paper we investigate some properties of the cohomological the theory of splittings of groups. Namely, we give a proof of the invariant E(G,W,M), defined in [5] and present related results with independence of E(G,W,M) with respect to the set of G-orbit representatives in W and properties of the invariant E(G,W,FTG) establishing a relation with the end of pairs of groups ê(G, T), defined by Kropphller and Holler in [15]. The main results give necessary conditions for G to split over a subgroup T, in the cases where M = Z₂(G/T ) or M = FTG.
Опис
Теми
Цитування
Some properties of E(G,W,FTG) and an application in the theory of splittings of groups / E.L.C. Fanti, L.S. Silva // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 2. — С. 179–193. — Бібліогр.: 19 назв. — англ.