Spectra of Observables in the q-Oscillator and q-Analogue of the Fourier Transform

Завантаження...
Ескіз

Дата

Автори

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

Spectra of the position and momentum operators of the Biedenharn-Macfarlane q-oscillator (with the main relation aa⁺ - qa⁺a = 1) are studied when q > 1. These operators are symmetric but not self-adjoint. They have a one-parameter family of self-adjoint extensions. These extensions are derived explicitly. Their spectra and eigenfunctions are given. Spectra of different extensions do not intersect. The results show that the creation and annihilation operators a⁺ and a of the q-oscillator for q > 1 cannot determine a physical system without further, more precise definition. In order to determine a physical system, we have to choose appropriate self-adjoint extensions of the position and momentum operators.

Опис

Теми

Цитування

Spectra of Observables in the q-Oscillator and q-Analogue of the Fourier Transform / A.U. Klimyk // Symmetry, Integrability and Geometry: Methods and Applications. — 2005. — Т. 1. — Бібліогр.: 22 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced