Hopf Algebras which Factorize through the Taft Algebra Tm²(q) and the Group Hopf Algebra K[Cn]

Завантаження...
Ескіз

Дата

Автори

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

We completely describe by generators and relations and classify all Hopf algebras which factorize through the Taft algebra Tm²(q) and the group Hopf algebra K[Cn]: they are nm²-dimensional quantum groups Tωnm²(q) associated to an n-th root of unity ω. Furthermore, using Dirichlet's prime number theorem, we are able to count the number of isomorphism types of such Hopf algebras. More precisely, if d=gcd(m,ν(n)) and ν(n)/d=p₁α₁⋯prαr is the prime decomposition of ν(n)/d then the number of types of Hopf algebras that factorize through Tm²(q) and K[Cn] is equal to (α1+1)(α2+1)⋯(αr+1), where ν(n) is the order of the group of n-th roots of unity in K. As a consequence of our approach, the automorphism groups of these Hopf algebras are described as well.

Опис

Теми

Цитування

Hopf Algebras which Factorize through the Taft Algebra Tm²(q) and the Group Hopf Algebra K[Cn] / A.-L. Agore // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 23 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced