k-Dirac Complexes

Завантаження...
Ескіз

Дата

Автори

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

This is the first paper in a series of two papers. In this paper, we construct complexes of invariant differential operators that live on homogeneous spaces of |2|-graded parabolic geometries of some particular type. We call them k-Dirac complexes. More explicitly, we will show that each k-Dirac complex arises as the direct image of a relative BGG sequence, and so this fits into the scheme of the Penrose transform. We will also prove that each k-Dirac complex is formally exact, i.e., it induces a long exact sequence of infinite (weighted) jets at any fixed point. In the second part of the series, we use this information to show that each k-Dirac complex is exact at the level of formal power series at any point and that it descends to a resolution of the k-Dirac operator studied in Clifford analysis.

Опис

Теми

Цитування

k-Dirac Complexes / T. Salač // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 27 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced