Lower Bounds for Numbers of Real Self-Dual Spaces in Problems of Schubert Calculus
Завантаження...
Файли
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
The self-dual spaces of polynomials are related to Bethe vectors in the Gaudin model associated to the Lie algebras of types B and C. In this paper, we give lower bounds for the number of real self-dual spaces in intersections of Schubert varieties related to osculating flags in the Grassmannian. The higher Gaudin Hamiltonians are self-adjoint with respect to a nondegenerate indefinite Hermitian form. Our bound comes from the computation of the signature of this form.
Опис
Теми
Цитування
Lower Bounds for Numbers of Real Self-Dual Spaces in Problems of Schubert Calculus / K. Lu // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 20 назв. — англ.