On Lagrangians with Reduced-Order Euler-Lagrange Equations

Завантаження...
Ескіз

Дата

Автори

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

If a Lagrangian defining a variational problem has order k, then its Euler-Lagrange equations generically have order 2k. This paper considers the case where the Euler-Lagrange equations have order strictly less than 2k, and shows that in such a case the Lagrangian must be a polynomial in the highest-order derivative variables, with a specific upper bound on the degree of the polynomial. The paper also provides an explicit formulation, derived from a geometrical construction, of a family of such k-th order Lagrangians, and it is conjectured that all such Lagrangians arise in this way.

Опис

Теми

Цитування

On Lagrangians with Reduced-Order Euler-Lagrange Equations / D. Saunders // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 9 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced