Metrized Quantum Vector Bundles over Quantum Tori Built from Riemannian Metrics and Rosenberg's Levi-Civita Connections

Завантаження...
Ескіз

Дата

Автори

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

We build metrized quantum vector bundles over a generically transcendental quantum torus, from Riemannian metrics, using Rosenberg's Levi-Civita connections for these metrics. We also prove that two metrized quantum vector bundles, corresponding to positive scalar multiples of a Riemannian metric, have distance zero between them with respect to the modular Gromov-Hausdorff propinquity.

Опис

Теми

Цитування

Metrized Quantum Vector Bundles over Quantum Tori Built from Riemannian Metrics and Rosenberg's Levi-Civita Connections / L. Huang // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 14 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced