Generalized Burchnall-Type Identities for Orthogonal Polynomials and Expansions

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

Burchnall's method to invert the Feldheim-Watson linearization formula for the Hermite polynomials is extended to all polynomial families in the Askey-scheme and its q-analogue. The resulting expansion formulas are made explicit for several families corresponding to measures with infinite support, including the Wilson and Askey-Wilson polynomials. An integrated version gives the possibility to give an alternate expression for orthogonal polynomials with respect to a modified weight. This gives expansions for polynomials, such as Hermite, Laguerre, Meixner, Charlier, Meixner-Pollaczek, and big q-Jacobi polynomials and big q-Laguerre polynomials. We show that one can find expansions for the orthogonal polynomials corresponding to the Toda-modification of the weight for the classical polynomials that correspond to known explicit solutions for the Toda lattice, i.e., for Hermite, Laguerre, Charlier, Meixner, Meixner-Pollaczek, and Krawtchouk polynomials.

Опис

Теми

Цитування

Generalized Burchnall-Type Identities for Orthogonal Polynomials and Expansions / M.E.H. Ismail, E. Koelink, P. Román // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 27 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced