Tetrahedron Equation and Quantum R Matrices for q-Oscillator Representations Mixing Particles and Holes

Завантаження...
Ескіз

Дата

Автори

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

We construct 2ⁿ+1 solutions to the Yang-Baxter equation associated with the quantum affine algebras Uq(A⁽¹⁾ₙ₋₁), Uq(A⁽²⁾₂ₙ), Uq(C⁽¹⁾ₙ), and Uq(D⁽²⁾ₙ₊₁). They act on the Fock spaces of an arbitrary mixture of particles and holes in general. Our method is based on new reductions of the tetrahedron equation and an embedding of the quantum affine algebras into n copies of the q-oscillator algebra, which admits an automorphism interchanging particles and holes.

Опис

Теми

Цитування

Tetrahedron Equation and Quantum R Matrices for q-Oscillator Representations Mixing Particles and Holes / A. Kuniba // Symmetry, Integrability and Geometry: Methods and Applications. — 2018. — Т. 14. — Бібліогр.: 20 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced